
Week 2 - Friday

 What did we talk about last time?
 Stable marriage
 Representative problems

 There are two lengths of rope
 Each one takes exactly one hour to burn completely
 The ropes are not the same lengths as each other
 Neither rope burns at a consistent speed (10% of a rope could

take 90% of the burn time, etc.)
 How can you burn the ropes to measure out exactly 45

minutes of time?

 It's a good idea to know the lay of the land when it comes to
running times

 Some running times (O(n), O(log n), O(n2)) come up all the
time

 There are often common characteristics between algorithms
with the same running times

 O(n) is linear time
 Linear algorithms only need to scan through the input once

(or perhaps a constant number of times)
 Online algorithms and data stream algorithms take this

approach of processing an item as it arrives (and are often
linear)

 The following straightforward algorithm finds the maximum
in linear time
 Note that this book (and many others) indexes from 1 rather than 0

 max = a1
 For i = 2 to n
 If ai > max then
▪ max = ai

 List A = a1, a2, … an and B = b1, b2, … bn
 Keep currenta and currentb pointers into each list, initialized

to point to a1 and b1, respectively
 While both lists are non-empty
 Let ai and bj be the elements that currenta and currentb point to
 Append the smaller to the output list
 Update the appropriate pointer

 Once a list is empty, append the remainder of the other list to
the output

 You can't say that you do constant work per element, since
some elements might be compared many, many times

 However, you can account for each item by "charging" it
whenever it is added to the final list

 There are only as many iterations as there are charges
 Each element can only be charged once, and there are 2n

elements
 Thus, the total time is Θ(n)

 O(n log n) time is a common running time
 Sometimes called linearithmic
 In practice only slightly worse than linear

 This running time is usually associated with divide and conquer
algorithms
 Any algorithm that recursively divides its input into k equal pieces and then

combines the solutions for those pieces in linear time will be O(n log n)
 O(n log n) is the best possible time for a comparison-based sort, including

merge sort
 Any algorithm that sorts elements and then does a linear scan will be O(n

log n)

 Comparing all pairs of n things will lead to an O(n2) algorithm
(since there are n(n – 1)/2 pairs)
 This is a naïve approach for finding the two closest points in a plane
 It turns out there is a cleverer way to do it in O(n log n) time

 Quadratic time also commonly arises when there are two
nested loops

 Cubic time is considered to be close to the slowest practical
running time for many problems

 If testing to see if an element is in a set can be done in constant
time, testing to see which of n sets are disjoint can be done in
cubic time

 For each set Si
 For each other set Sj
▪ For each element p of Si
▪ Determine whether p belongs to Sj

▪ If no element of Si belongs to Sj
▪ Report that Si and Sj are disjoint

 Matrix multiplication often comes up in the discussion of cubic
time

 Multiplying two n x n matrices A and B takes cubic time
 For i = 1 to n
 For j = 1 to n
▪ C[i, j] = 0
▪ For k = 1 to n
 C[i, j] = C[i, j] + A[i, k] ∙ B[k, j]

 Matrix chain multiplication optimization also has an O(n3)
dynamic programming algorithm

 Ironically, both matrix multiplication and matrix chain
multiplication optimization both have better algorithms

 If you want to search over all pairs, you get O(n2) algorithms
 If you want to search over all subsets of size k, you'll get O(nk)

algorithms
 For example, the following algorithm will find independent sets of

size k
 For each subset S of k nodes
 Check whether S is an independent set
 If S is independent
▪ Print "Success!" and exit

 Print "Failure!"

 How many k-element subsets are there?
𝑛𝑛
𝑘𝑘 =

𝑛𝑛 𝑛𝑛 − 1 𝑛𝑛 − 2 … (𝑛𝑛 − 𝑘𝑘 + 1)
𝑘𝑘 𝑘𝑘 − 1 𝑘𝑘 − 2 … (2)(1)

≤
𝑛𝑛𝑘𝑘

𝑘𝑘!
 Since k is a constant, k! is a constant too
 For each set of k things, we have to check O(k2) pairs to see if

they have an edge between them
 Since k is a constant, this is a constant too

 The total work is thus O(nk)

 The full maximum independent set algorithm:
 For each subset S of nodes
 Check whether S is an independent set
 If S is a larger independent set than the largest seen yet
▪ Record the size of S as the new maximum

 There are 2n subsets of an n-element set
 Since each subset could be as large as n, testing whether it is

independent could mean testing O(n2) pairs
 The total running time is thus O(n22n)

 If you have n items that you want to match up with n other
items, there are n! possibilities

 Recall that n! = n(n – 1)(n – 2) … (2)(1)
 n! grows even faster than 2n

 Even though there are n! ways to match up n men with n
women, our stable marriage algorithm worked in O(n2) time

 O(n!) time also comes up when you're trying to order n items

 Is it possible to do better than linear time?
 Yes, both O(log n) time and O(𝑛𝑛) are better than linear time
 A great example of logarithmic running time is binary search on sorted array A,

looking for value k
 start = 1
 end = n
 While start < end
 middle = (start + end) / 2
 If A[middle] < k

▪ end = middle – 1
 Else if A[middle] > k

▪ start = middle + 1
 Else

▪ Print "Value found at location " + middle

 We cut the search space in half every time
 At worst, we keep cutting n in half until we get 1
 Let’s say x is the number of times we look:

1
2

x
n = 1

n = 2x
log2 n = x

 The running time is O(log n)

 Put the following functions in ascending order of growth rate
 𝑓𝑓1 𝑛𝑛 = 10𝑛𝑛

 𝑓𝑓2 𝑛𝑛 = 𝑛𝑛
1
3

 𝑓𝑓3 𝑛𝑛 = 𝑛𝑛𝑛𝑛

 𝑓𝑓4 𝑛𝑛 = log2 𝑛𝑛

 𝑓𝑓5 𝑛𝑛 = 2 log2 𝑛𝑛

 Let f(n) and g(n) be two functions that take nonnegative
values, and suppose that f(n) is O(g(n)).

 Prove that g(n) is Ω(f(n)).

 Proofs by mathematical induction
 Definitions and applications for graphs

 Assignment 1 is due tonight at midnight
 Start on Assignment 2 when it's assigned
 Read section 3.1

	COMP 4500
	Last time
	Questions?
	Logical warmup
	Three-Sentence Summary of Survey of Common Running Times
	Survey of Common Running Times
	Common running times
	Linear time
	Find the maximum
	Merge two sorted lists
	Analysis of merge
	Linearithmic time
	Quadratic time
	Cubic time
	Matrix multiplication
	O(nk) time
	Analysis of size k independent set algorithm
	Beyond polynomial time
	Running time for maximum independent set
	Factorial
	Sublinear time
	Running time for binary search
	Worked Exercises
	Exercise 1
	Exercise 2
	Quiz
	Upcoming
	Next time…
	Reminders

