
Week 2 - Friday



 What did we talk about last time?
 Stable marriage
 Representative problems





 There are two lengths of rope
 Each one takes exactly one hour to burn completely
 The ropes are not the same lengths as each other
 Neither rope burns at a consistent speed (10% of a rope could 

take 90% of the burn time, etc.)
 How can you burn the ropes to measure out exactly 45 

minutes of time?







 It's a good idea to know the lay of the land when it comes to 
running times

 Some running times (O(n), O(log n), O(n2)) come up all the 
time

 There are often common characteristics between algorithms 
with the same running times



 O(n) is linear time
 Linear algorithms only need to scan through the input once 

(or perhaps a constant number of times)
 Online algorithms and data stream algorithms take this 

approach of processing an item as it arrives (and are often 
linear)



 The following straightforward algorithm finds the maximum 
in linear time
 Note that this book (and many others) indexes from 1 rather than 0

 max = a1
 For i = 2 to n
 If ai > max then
▪ max = ai



 List A = a1, a2, … an and B = b1, b2, … bn
 Keep currenta and currentb pointers into each list, initialized 

to point to a1 and b1, respectively
 While both lists are non-empty
 Let ai and bj be the elements that currenta and currentb point to
 Append the smaller to the output list
 Update the appropriate pointer

 Once a list is empty, append the remainder of the other list to 
the output



 You can't say that you do constant work per element, since 
some elements might be compared many, many times

 However, you can account for each item by "charging" it 
whenever it is added to the final list

 There are only as many iterations as there are charges
 Each element can only be charged once, and there are 2n

elements
 Thus, the total time is Θ(n)



 O(n log n) time is a common running time
 Sometimes called linearithmic
 In practice only slightly worse than linear

 This running time is usually associated with divide and conquer 
algorithms
 Any algorithm that recursively divides its input into k equal pieces and then 

combines the solutions for those pieces in linear time will be O(n log n)
 O(n log n) is the best possible time for a comparison-based sort, including 

merge sort
 Any algorithm that sorts elements and then does a linear scan will be O(n

log n)



 Comparing all pairs of n things will lead to an O(n2) algorithm 
(since there are n(n – 1)/2 pairs)
 This is a naïve approach for finding the two closest points in a plane
 It turns out there is a cleverer way to do it in O(n log n) time

 Quadratic time also commonly arises when there are two 
nested loops



 Cubic time is considered to be close to the slowest practical 
running time for many problems

 If testing to see if an element is in a set can be done in constant 
time, testing to see which of n sets are disjoint can be done in 
cubic time

 For each set Si
 For each other set Sj
▪ For each element p of Si
▪ Determine whether p belongs to Sj

▪ If no element of Si belongs to Sj
▪ Report that Si and Sj are disjoint



 Matrix multiplication often comes up in the discussion of cubic 
time

 Multiplying two n x n matrices A and B takes cubic time
 For i = 1 to n
 For j = 1 to n
▪ C[i, j] = 0
▪ For k = 1 to n
 C[i, j] = C[i, j] + A[i, k] ∙ B[k, j]

 Matrix chain multiplication optimization also has an O(n3) 
dynamic programming algorithm

 Ironically, both matrix multiplication and matrix chain 
multiplication optimization both have better algorithms



 If you want to search over all pairs, you get O(n2) algorithms
 If you want to search over all subsets of size k, you'll get O(nk) 

algorithms
 For example, the following algorithm will find independent sets of 

size k
 For each subset S of k nodes
 Check whether S is an independent set
 If S is independent
▪ Print "Success!" and exit

 Print "Failure!"



 How many k-element subsets are there?
𝑛𝑛
𝑘𝑘 =

𝑛𝑛 𝑛𝑛 − 1 𝑛𝑛 − 2 … (𝑛𝑛 − 𝑘𝑘 + 1)
𝑘𝑘 𝑘𝑘 − 1 𝑘𝑘 − 2 … (2)(1)

≤
𝑛𝑛𝑘𝑘

𝑘𝑘!
 Since k is a constant, k! is a constant too
 For each set of k things, we have to check O(k2) pairs to see if 

they have an edge between them
 Since k is a constant, this is a constant too

 The total work is thus O(nk)



 The full maximum independent set algorithm:
 For each subset S of nodes
 Check whether S is an independent set
 If S is a larger independent set than the largest seen yet
▪ Record the size of S as the new maximum



 There are 2n subsets of an n-element set
 Since each subset could be as large as n, testing whether it is 

independent could mean testing O(n2) pairs
 The total running time is thus O(n22n)



 If you have n items that you want to match up with n other 
items, there are n! possibilities

 Recall that n! = n(n – 1)(n – 2) … (2)(1)
 n! grows even faster than 2n

 Even though there are n! ways to match up n men with n
women, our stable marriage algorithm worked in O(n2) time

 O(n!) time also comes up when you're trying to order n items



 Is it possible to do better than linear time?
 Yes, both O(log n) time and O( 𝑛𝑛) are better than linear time
 A great example of logarithmic running time is binary search on sorted array A, 

looking for value k
 start = 1
 end = n
 While start < end
 middle = (start + end) / 2
 If A[middle] < k

▪ end = middle – 1
 Else if A[middle] > k

▪ start = middle + 1
 Else

▪ Print "Value found at location " + middle



 We cut the search space in half every time
 At worst, we keep cutting n in half until we get 1
 Let’s say x is the number of times we look:

1
2

x
n = 1

n = 2x
log2 n = x

 The running time is O(log n)





 Put the following functions in ascending order of growth rate
 𝑓𝑓1 𝑛𝑛 = 10𝑛𝑛

 𝑓𝑓2 𝑛𝑛 = 𝑛𝑛
1
3

 𝑓𝑓3 𝑛𝑛 = 𝑛𝑛𝑛𝑛

 𝑓𝑓4 𝑛𝑛 = log2 𝑛𝑛

 𝑓𝑓5 𝑛𝑛 = 2 log2 𝑛𝑛



 Let f(n) and g(n) be two functions that take nonnegative 
values, and suppose that f(n) is O(g(n)).

 Prove that g(n) is Ω(f(n)).







 Proofs by mathematical induction
 Definitions and applications for graphs



 Assignment 1 is due tonight at midnight
 Start on Assignment 2 when it's assigned
 Read section 3.1
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