
Week 2 - Friday



 What did we talk about last time?
 Stable marriage
 Representative problems





 There are two lengths of rope
 Each one takes exactly one hour to burn completely
 The ropes are not the same lengths as each other
 Neither rope burns at a consistent speed (10% of a rope could 

take 90% of the burn time, etc.)
 How can you burn the ropes to measure out exactly 45 

minutes of time?







 It's a good idea to know the lay of the land when it comes to 
running times

 Some running times (O(n), O(log n), O(n2)) come up all the 
time

 There are often common characteristics between algorithms 
with the same running times



 O(n) is linear time
 Linear algorithms only need to scan through the input once 

(or perhaps a constant number of times)
 Online algorithms and data stream algorithms take this 

approach of processing an item as it arrives (and are often 
linear)



 The following straightforward algorithm finds the maximum 
in linear time
 Note that this book (and many others) indexes from 1 rather than 0

 max = a1
 For i = 2 to n
 If ai > max then
▪ max = ai



 List A = a1, a2, … an and B = b1, b2, … bn
 Keep currenta and currentb pointers into each list, initialized 

to point to a1 and b1, respectively
 While both lists are non-empty
 Let ai and bj be the elements that currenta and currentb point to
 Append the smaller to the output list
 Update the appropriate pointer

 Once a list is empty, append the remainder of the other list to 
the output



 You can't say that you do constant work per element, since 
some elements might be compared many, many times

 However, you can account for each item by "charging" it 
whenever it is added to the final list

 There are only as many iterations as there are charges
 Each element can only be charged once, and there are 2n

elements
 Thus, the total time is Θ(n)



 O(n log n) time is a common running time
 Sometimes called linearithmic
 In practice only slightly worse than linear

 This running time is usually associated with divide and conquer 
algorithms
 Any algorithm that recursively divides its input into k equal pieces and then 

combines the solutions for those pieces in linear time will be O(n log n)
 O(n log n) is the best possible time for a comparison-based sort, including 

merge sort
 Any algorithm that sorts elements and then does a linear scan will be O(n

log n)



 Comparing all pairs of n things will lead to an O(n2) algorithm 
(since there are n(n – 1)/2 pairs)
 This is a naïve approach for finding the two closest points in a plane
 It turns out there is a cleverer way to do it in O(n log n) time

 Quadratic time also commonly arises when there are two 
nested loops



 Cubic time is considered to be close to the slowest practical 
running time for many problems

 If testing to see if an element is in a set can be done in constant 
time, testing to see which of n sets are disjoint can be done in 
cubic time

 For each set Si
 For each other set Sj
▪ For each element p of Si
▪ Determine whether p belongs to Sj

▪ If no element of Si belongs to Sj
▪ Report that Si and Sj are disjoint



 Matrix multiplication often comes up in the discussion of cubic 
time

 Multiplying two n x n matrices A and B takes cubic time
 For i = 1 to n
 For j = 1 to n
▪ C[i, j] = 0
▪ For k = 1 to n
 C[i, j] = C[i, j] + A[i, k] ∙ B[k, j]

 Matrix chain multiplication optimization also has an O(n3) 
dynamic programming algorithm

 Ironically, both matrix multiplication and matrix chain 
multiplication optimization both have better algorithms



 If you want to search over all pairs, you get O(n2) algorithms
 If you want to search over all subsets of size k, you'll get O(nk) 

algorithms
 For example, the following algorithm will find independent sets of 

size k
 For each subset S of k nodes
 Check whether S is an independent set
 If S is independent
▪ Print "Success!" and exit

 Print "Failure!"



 How many k-element subsets are there?
𝑛𝑛
𝑘𝑘 =

𝑛𝑛 𝑛𝑛 − 1 𝑛𝑛 − 2 … (𝑛𝑛 − 𝑘𝑘 + 1)
𝑘𝑘 𝑘𝑘 − 1 𝑘𝑘 − 2 … (2)(1)

≤
𝑛𝑛𝑘𝑘

𝑘𝑘!
 Since k is a constant, k! is a constant too
 For each set of k things, we have to check O(k2) pairs to see if 

they have an edge between them
 Since k is a constant, this is a constant too

 The total work is thus O(nk)



 The full maximum independent set algorithm:
 For each subset S of nodes
 Check whether S is an independent set
 If S is a larger independent set than the largest seen yet
▪ Record the size of S as the new maximum



 There are 2n subsets of an n-element set
 Since each subset could be as large as n, testing whether it is 

independent could mean testing O(n2) pairs
 The total running time is thus O(n22n)



 If you have n items that you want to match up with n other 
items, there are n! possibilities

 Recall that n! = n(n – 1)(n – 2) … (2)(1)
 n! grows even faster than 2n

 Even though there are n! ways to match up n men with n
women, our stable marriage algorithm worked in O(n2) time

 O(n!) time also comes up when you're trying to order n items



 Is it possible to do better than linear time?
 Yes, both O(log n) time and O( 𝑛𝑛) are better than linear time
 A great example of logarithmic running time is binary search on sorted array A, 

looking for value k
 start = 1
 end = n
 While start < end
 middle = (start + end) / 2
 If A[middle] < k

▪ end = middle – 1
 Else if A[middle] > k

▪ start = middle + 1
 Else

▪ Print "Value found at location " + middle



 We cut the search space in half every time
 At worst, we keep cutting n in half until we get 1
 Let’s say x is the number of times we look:

1
2

x
n = 1

n = 2x
log2 n = x

 The running time is O(log n)





 Put the following functions in ascending order of growth rate
 𝑓𝑓1 𝑛𝑛 = 10𝑛𝑛

 𝑓𝑓2 𝑛𝑛 = 𝑛𝑛
1
3

 𝑓𝑓3 𝑛𝑛 = 𝑛𝑛𝑛𝑛

 𝑓𝑓4 𝑛𝑛 = log2 𝑛𝑛

 𝑓𝑓5 𝑛𝑛 = 2 log2 𝑛𝑛



 Let f(n) and g(n) be two functions that take nonnegative 
values, and suppose that f(n) is O(g(n)).

 Prove that g(n) is Ω(f(n)).







 Proofs by mathematical induction
 Definitions and applications for graphs



 Assignment 1 is due tonight at midnight
 Start on Assignment 2 when it's assigned
 Read section 3.1
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